Scientists discover new link between bone cells and blood sugar level

The skeleton is often seen as an inert tissue, but this perception is quite wrong. In fact, the skeleton is constantly being remodelled: old bone fragments are broken down and new bone matrix is deposited, overall leading to a completely renewed skeleton every ten years. There are specific cells that form bone and other cells that resorb it. In diseases such as osteoporosis, the latter cells are too active and too much bone is degraded. Most drugs that are currently used primarily aim at blocking these resorptive cells. Unfortunately, this generally means that their counterparts, the cells responsible for the formation of bone, also stop working. As a consequence, the renewal of the bone is halted. In addition to the bone loss, the quality of the bone also deteriorates. Ultimately, this can lead to painful fractures that are difficult to heal.

To develop new drugs, scientists are investigating how the bone-forming cells can be activated. “To achieve this, it is crucial that we understand exactly how these cells work”, says professor Christa Maes. “Our research focuses on how these bone cells emerge and form bone at the right sites. A good blood supply is vital for the bone cells to work well. But we do not yet understand the full meaning of the close connection between blood vessels and bone cells. One aspect is that blood vessels provide oxygen. In this study, we investigated the importance of oxygen by analyzing mice with a mutation that makes their bone cells behave as if they were deprived of oxygen.”

The researchers found two consequences. Firstly, the mice formed abnormally heavy bones. Within the bones, they noted that the bone cells absorbed massive amounts of glucose. “That observation is in line with the usual response of cells to oxygen deprivation: they save on the consumption of oxygen by converting glucose to lactate instead of burning the glucose. No oxygen is needed for this conversion, but the downside is that it produces much less energy. In order to generate enough energy, the bone cells in our mice therefore take up much more glucose than normal.”

Leave a Reply

Your email address will not be published. Required fields are marked *